Zhenkun Cai

Rm 122A SHB, CUHK Hong Kong, China ℘ (+86) 18819451537 ⊠ zekucai@gmail.com

Education

- 2018–2022 The Chinese University of Hong Kong,
 (Expected) Ph.D. in Computer Science and Engineering, Supervisor: Prof. James Cheng.
 2013–2017 South China University of Technology,
 - **B.Eng** in Computer Science and Technology.

Research Interests

Distributed system, machine learning framework, cluster scheduling.

Internships

Oct 2021 - Now	 Amazon Web Service, AI Lab. Applied Scientist Intern in DGL Team Distributed sampling on GPUs for GNN training
Nov 2020 - Sept 2021	 Alibaba Group, Apsara Platform. Research Intern in Fuxi Team Resource management for clusters with thousands of GPUs
July 2019 - Sept 2020	 HUAWEI, 2012 Lab. Research Intern in Mindspore Team Auto-parallelism systems for training large-scale DNN models Efficient distributed GNN training systems
July 2018 - Aug 2018	 Alibaba Group, Apsara Platform. Research Intern in MaxCompute Team Smart index selection for OLAP on big tables in data warehouses
July 2017 -	The Chinese University of Hong Kong.

July 2018 • Research Assistant supervised by Prof. James Cheng • Distributed Systems for large-scale data analytics

Awards

- 2018 2022 Postgraduate Studentship, CUHK.
- 2014 2016 Undergraduate National Scholarship (three times), SCUT.
- 2014 2016 Merit Student, SCUT.
 - 2017 ACM-ICPC World Finalist (Rank 56).
 - 2016 ACM-ICPC Regional Contest, Gold Medals.
 - 2016 Guangdong Collegiate Programming Contest (GDCPC), Champion.

Skills

Programming C/C++, Python, CUDA.

— Talks

- Nov 2021 Towards Efficient Training for Large-scale Deep Learning Models, AWS AI Lab.
- Apr 2021 DGCL: An Efficient Communication Library for Distributed GNN Training, Eurosys 2021.

Systems MPI, Tensorflow, Pytorch, NCCL.

Projects

Systems for large-scale machine learning

TensorOpt: Training Large-scale DNNs with Auto-parallel.

- Supports distributed training of large models (e.g., Transformer, WideResNet) using limited GPU memory
- Optimally decides the parallelization strategy and automatically generates code for operators in a DNN
- Developed on top of TensorFlow with user-friendly Python APIs

EDL: An Elastic Deep Learning System on GPUs.

- Supports elastic deep learning, i.e., dynamically adjust the number of GPU at runtime
- Stop-free scaling and dynamic data pipeline on Horovod

FlexPS: A Parameter Server with Flexible Parallelism Control.

- A novel multi-stage abstraction to support flexible parallelism control in parameter server
- Optimizations to reduce the overhead of parallelism adjustment

Systems for graph neural networks

DGCL: A Distributed Graph Communication Library for GNN systems.

- A general library to scale single-GPU GNN systems (e.g., DGL and PyG) to the multi-GPU setting
- Efficient communication kernels optimized for load balancing and bandwidth utilization on NVLinks, PCIe and InfiniBand

Seastar: A Vertex-centric GNN System.

- A vertex-centric programming model for GNNs
- Kernel optimizations such as operator fusion and vertex parallelism to reduce GPU memory consumption and improve training efficiency

Large-scale cluster scheduling

PPS: Fair And Efficient Scheduling for Multi-Tenant GPU Clusters.

- Probabilistic prediction based scheduling for clusters with thousands of GPUs
- Black-box and non-preemptive scheduling for GPU jobs
- Achieves both efficiency and fairness at the same time

Ursa: A Framework conducting both Resource Scheduling and Execution for OLAP Jobs.

- Captures dynamic resource needs at runtime and enables fine-grained, timely scheduling
- Achieves high resource utilization, which translates into shorter makespan and average JCT

Publications

[1] TensorOpt: Exploring the Tradeoffs in Distributed DNN Training with Auto-Parallelism, **TPDS** 2022

Z. Cai, K. Ma, X. Yan, Y. Wu, Y. Huang, J. Cheng, T. Su, F. Yu.

- [2] PPS: Fair and Efficient Scheduling for Multi-Tenant GPU Clusters, NSDI 2022 (Under Review)
 Z. Cai, K. Ma, X. Yan, Y. Zhang, Z. Liu, Y. Feng, C. Li, J. Cheng.
- [3] DGCL: An Efficient Communication Library for Distributed GNN Training, Eurosys 2021
 Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, F. Yu.
- [4] Seastar: Vertex-Centric Programming for Graph Neural Networks, Eurosys 2021
 Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, F. Yu.
- [5] Elastic Deep Learning in Multi-Tenant GPU Clusters, TPDS 2021
 Y. Wu, K. Ma, X. Yan, Z. Liu, Z. Cai, Y. Huang, J. Cheng, H. Yuan, F. Yu.
- [6] Improving Resource Utilization by Timely Fine-Grained Scheduling, Eurosys 2020
 T. Jin, Z. Cai, B. Li, C. Zheng, G. Jiang, J. Cheng.
- [7] FlexPS: Flexible Parallelism Control in Parameter Server Architecture, VLDB 2018
 Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, Y. Guo, F. Yang, J. Li, and J. Cheng.
- [8] Scalable De Novo Genome Assembly Using Pregel, ICDE 2018
 D. Yan, H. Chen, Z. Cai, J. Cheng, and B. Shao.